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The observing system...today

GEOS-5 GSI 09—Au—2007 12UTC AII Data 2 794 770 observations
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Observing System Experiments (OSES)

The traditional method of assessing the impact of observations on
forecast skill...

e Subsets of observations are removed from the assimilation system
and forecasts are compared against a ‘control’ system that includes all
observations

e Performed intermittently at operational centers but, because of their
expense, usually involve a relatively small number of independent
experiments, each considering relatively large subsets of observations

But what if one wants to investigate, for example, the impact of all
iIndividual channels on a given satellite...and over arbitrary
periods of time, or even routinely...?




Qutline of Talk

e Estimation of observation impact — adjoint (ADJ) method

o GEOS-5 observation impact results (‘old’ GSI)

e Comparison of ADJ and OSE results
e Looking ahead: 3/4-DVAR results with ‘new’ GSI

Concluding remarks



Data Assimilation-Forecast System

e Atmospheric forecast model:

xf:m(xo)

e Atmospheric analysis (best estimate of X ) :

5X0 = K5y

where: 0Xg =X, —Xp (increment, correction vector)
0y =y —h(Xp) (innovation vector ~109)

K determines the scalar weight (gain) given to each observation

> Note that 0Xg = KoYy may be viewed as a transformation between
a perturbation in state space and a perturbation in observation space



Estimating Observation Impact

Forecast error measure (dry energy, sfc—130 hPa):

e= (x(‘; —xV)TC(x('; —Xy)

Taylor expansion of change in € due to change in Xg :

2 36
5e:5xo(ae 10%e 50 }8—5Xo+ )=(%0) ' g

8X0 2 axo 6 @XO

Transformation to observation-space:

OXg = Xgq — Xp = Koy

3rd order approximation of o€ in observation space:

se~(8y)TKTIMIC(x) —xy)HMIC(xS —x )1 = (5y) s

I I I ...summed

analysis adjoint model adjoint observation
impact



Properties of the Impact Estimate

se~ (5y)' G

e The impact of arbitrary subsets of observations (e.g. instrument
type, channel, location) can be easily quantified by summing only the
terms involving the desired elements of oY .

e The “weight” vector g5 is computed only once, and involves the
entire set of observations; removing or changing the properties of one
observation changes the scalar measure of all other observations.

e Valid forecast range limited by tangent linear assumption for MT

oe <0 ...the observation improves the forecast
oe >0 ...the observation degrades the forecast

...see Langland and Baker (2004), Errico (2007), Gelaro et al. (2007)



Accuracy of Observation Impact Estimate
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e All values negative...observations provide benefit overall

e 2nd and 3rd order approximations recover ~85% of ‘actual’
impact computed from model fields directly

e Accuracy of observation space estimate allows meaningful
aggregation by observation type, location, channel, etc.



Nonlinearity Considerations

se~(5y)' KT[MEC(XJ —Xy)+ MJC Xy)]

03

Gelaro et al. (2007) examined the effects of nonlinearity on the interpretation
of the partial sums used to estimate observation impact by platform, station,
channel, etc.

e §3 depends nonlinearly on all innovations due to dependence
on X, ...partial sums of O€ involve cross terms with other
observations = possible ambiguities

e No obvious detrimental effects (cross terms appear small) for
estimating impacts of the major observing systems...smaller subsets?...



GEOS-5 Observation Impact Experiments

Analysis System

e 3DVAR Gridpoint Statistical Interpolation (GSI)
e 0.5°resolution, 72 levels
e Adjoint: Exact line-by-line (Zhu and Gelaro 2008)

Forecast Model
e GEOS-5: FV-core + full physics
¢ 0.5° resolution, 72 levels
e Adjoint: FV-core 1° resolution + simple dry physics

Experimentation

e 6h data assimilation cycle, July 2005 and January 2006
e 24h forecasts from OOUTC to assess observation impact

e Separate error response functions for the globe, NH, SH
and tropics



24h Forecast Error Sensitivity to Initial Conditions
GEOS-5 July 2005
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Total 24hr Forecast Error Reduction due to Observations
January 2006 00UTC

Global N. Hemisphere (20°-80°)

S. Hemisphere (20°-80°) Tropics (20°-20°)
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GEOS-5 Adjoint Data Assimilation System




Total 24hr Forecast Error Reduction due to Observations
July 2005 00UTC

Global N. Hemisphere (20°-80°)

S. Hemisphere (20°-80°) Tropics (20°-20°)
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GEOS-5 Adjoint Data Assimilation System




Accumulated Observation Impact - AIRS
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Accumulated Observation Impact — ALL AMSU-A

over N.Pacific; region
of large forecast error
sensitivity

e Large positive impact
over southern oceans,
but negative impacts
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January 2006 NH Observattons

-Observation Impact — Satwinds
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Impact of satellite observations by channel
July 2005 00UTC
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Localized examination of AIRS impacts
July 2005 00UTC
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Fraction of Observations that Improve the Forecast
GEOS-5 July 2005 00z
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Only a small majority of the observations improve the forecast!




How can ‘good observations’ have a negative impact?

The fact that data assimilation relies on statistics of background and observation
errors implies a distribution of beneficial and non-beneficial impacts...

...the fact that we don’t know these error statistics accurately increases the
likelihood of there being non-beneficial impacts

O Single-ob, scalar analysis: x* = x” + k(y —~ xb) wherek = o /(af + aj)
O Expected impact is positive: E(g: — gé): _kgbz <0

O But sometimes, the impact is negative:
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Observation Impact in NRL/NAVDAS
24h Forecasts from 00z Jan-Feb 2006
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Comparison of ADJ results with OSEs

How do observation impact results based on the ADJ method compare with
traditional observing system experiments...OSES?

Can the two approaches be meaningfully compared?
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e Skill (impact) measured using same energy-based error metrics for the
globe, NH, SH and tropics as in ADJ experiments



Comparison and Interpretation of ADJ and OSE Results

...a few things to keep in mind...

e The ADJ measures the impacts of observations in the context of all
other observations present in the assimilation system, while the OSE
changes/degrades the system (i.e., K differs for each OSE member)

e The ADJ measures the impact of observations in each analysis
cycle separately and against the control background, while the OSE
measures the impact of removing observational information from
both the background and analysis in a cumulative manner

e The ADJ measures the response of a single forecast metric to all
perturbations of the observing system, while the OSE measures the
effect of a single perturbation on all forecast metrics

e The ADJ is restricted by the tangent linear assumption (valid ~1-3
days), while the OSE is not



‘Direct’ quantitative comparison of ADJ and OSEs

e= (x(‘; —x\,)TC(x(;c —Xy)

se=(5y)TKTIMC(x{ —x,) +M3C(x{ —x,)]

Define the fractional impact Fj of observing system | for each approach:

Fi(ADJ) =de;/oe

e Measures the % decrease in error due to the presence of
observing system j with respect to the background forecast

. >;Fj(ADJ)=1

|:j (OSE) = (enoJ- — et )/ectl

e Measures the % increase in error due to the removal of
observing system | with respect to the control forecast
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B OSE

ADJ

Normalized % Contributions to 24hr Fcst Error Reduction January 2006
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GEOS-5 Observing System Experiments (OSE)

20

18

24h Forecas!
Error Energy

(J/KQ) 14

12
Skill ‘collapses’
when all AMSUA |10
removed

16

14

24h Forecast
Error Energy .

(J/KQ)

Satwind impact | 1
due mainly to data
in the tropics

July 2005 00z Global

/\ N

/ - \/J\_/\ — control

\ A\ /_\ no amsual

V ~ — NOo amsuaZ?

/\/\/\/\’\/\/\/\/\ /. — no amsua3
Ny 4 :

/\/\/\,_/\/\/\ .

\/\

1 3 5 7

9 11 13 15 17 19 21 23 25 217 29 31

July 2005 00z Global

—— control
| no satwnd

no satwnd _tr
/\/\AM (20N-208)

: ~




ADJ applied to OSEs

. January 2006 Global Observations
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O Removal of AMSUA results in large increase in AIRS (and other) impacts

Removal of AIRS results in significant increase in AMSUA impact

Removal of Raobs results in significant increase in impact of several
obs types, with AIRS and Satwinds being a notable exceptions



ADJ applied to OSEs

. July 2005 Tropical Observations
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Looking ahead...new methods for computing the
adjoint of GSI for 3ADVAR and 4DVAR

Features recently added to GSI as part of 4DVAR development allow
‘maintenance free’ adjoint capability for both 3DVAR and 4DVAR...

Method 1. Use GSI minimization (CG or quasi-Newton) to solve
modified linear system (input sensitivity vector instead of oY)

¢ Adjoint costs the same as the analysis
e Minimal extra storage requirements (outer loops)
e Adjoint valid only at convergence

Method 2: Use transposed Lanczos vectors (Lanczos minimization)

¢ Adjoint is essentially free...big savings in 4ADVAR
e Need to store Lanczos vectors
¢ Adjoint valid regardless of convergence...good diagnostic tool
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Observation impact vs. time in the assimilation window
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Conclusions - 1

¢ Adjoint data assimilation system provides an accurate and efficient
tool for estimating observation impact on analyses/short-term forecasts

v computed with respect to all observations simultaneously

v’ permits arbitrary aggregation of results by data type,
channel, location, etc.

e Applicable to data quality assessment and selection, understanding
DAS behavior, identifying redundancies in the observing system

e Excellently suited for real-time monitoring of observation impact:
...see NRL page: http://www.nrimry.navy.mil/ob_sens/

e Complement and extend, but not replace, traditional OSEs as tools
for assessing observation impact...metrics, interpretations differ



Conclusions - 2

e Despite fundamental differences in how impact is measured, ADJ and
OSE methods provide comparable estimates of the overall ‘importance’
of most observing systems tested

e Comparisons of impacts in different forecast systems should help
clarify deficiencies in data quality vs. assimilation methodology, and
hopefully provide useful feedback to data producers.

Used together, ADJ and OSEs illuminate the complex, complementary
nature of how observations are used by the assimilation system




Observation impact activities in the NWP community

e The adjoint method for assessing observation impact is either in
regular use or active development at NRL, GMAO, MSC, ECMWF and
Méteo France

e These organizations have agreed to participate in an inter-comparison
of results for the period Jan-Feb 2007

v’ preparation for THORPEX Pacific Asian Regional
Campaign (T-PARC) scheduled for Fall 2008-Winter 2009

v’ first results to be presented at workshop: Impact of Various
Observing Systems on NWP, WMO HQ Geneva, May 2008

¢ NRL and GMAO have JCSDA-sponsored inter-comparison effort;
plan includes implementation of online, real-time monitoring already in
place at NRL (shared display software developed at NRL)
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